Panasonic ideas for life

RoHS compliant

FEATURES

1. Compact and flat type $10.6(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 4.0(\mathrm{H}) .417(\mathrm{~L}) \times$ $.354(\mathrm{~W}) \times .157(\mathrm{H})$
2. High contact capacity: 2 A
3. Outstanding surge resistance.

Surge breakdown voltage between contact and coil:
2,500 V $2 \times 10 \mu \mathrm{sec}$. (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)

4 mm height! 2 A high capacity
 1 Form C type ultra thin, super miniature relay

4. Initial breakdown voltage: 1,500 Vrms for 1 min. (Between contact and coil)
5. Nominal operating power:

High sensitivity of 140 mW (Single side stable type)
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
6. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of $3.3 \mathrm{~mm} .130 \mathrm{inch})$
Destructive vibration resistance: 10 to 55 Hz (at double amplitude of $5 \mathrm{~mm} .197 \mathrm{inch})$
7. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products TX/TX-S/TX-D relay with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
8. Self-clinching terminal also available
9. Pre-soldering terminal
10. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Computer peripherals
2. Telephone devices and telecommunications equipment
3. Crime and disaster prevention equipment
4. Machine tools

ORDERING INFORMATION

[^0]
TYPES

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
	1.5 V DC	Part No.	Part No.	Part No.
	3V DC	TK1-1.5V	TK1-L-1.5V	TK1-L2-1.5V
	4.5 V DC	TK1-3V	TK1-L-3V	TK1-L2-3V
	5V DC	TK1-4.5V	TK1-L-4.5V	TK1-L2-4.5V
	6V DC	TK1-5V	TK1-L-5V	TK1-L2-5V
	9V DC	TK1-6V	TK1-L-6V	TK1-L2-6V
	12V DC	TK1-9V	TK1-L-9V	TK1-L2-9V
	$24 V ~ D C ~$	TK1-12V	TK1-L-12V	TK1-L2-12V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Self-clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
1 Form C	1.5 V DC	TK1-H-1.5V	TK1-L-H-1.5V	TK1-L2-H-1.5V
	3V DC	TK1-H-3V	TK1-L-H-3V	TK1-L2-H-3V
	4.5 V DC	TK1-H-4.5V	TK1-L-H-4.5V	TK1-L2-H-4.5V
	5V DC	TK1-H-5V	TK1-L-H-5V	TK1-L2-H-5V
	6V DC	TK1-H-6V	TK1-L-H-6V	TK1-L2-H-6V
	9 V DC	TK1-H-9V	TK1-L-H-9V	TK1-L2-H-9V
	12 V D	TK1-H-12V	TK1-L-H-12V	TK1-L2-H-12V
	24V DC	TK1-H-24V	TK1-L-H-24V	TK1-L2-H-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24V DC			11.3 mA	2,133 2	270 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12V DC			8.3 mA	1,440 Ω		
24V DC			6.3 mA	$3,840 \Omega$	150 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Nominal } \\ \text { cu } \\ {[\pm 10 \%] \text { (at }} \end{array}$	perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil } \\ {[\pm 10 \%](2} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133.9 mA	133.9 mA	11.2Ω	11.2Ω	200mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			66.7 mA	66.7 mA	45Ω	45Ω			
4.5 V DC			44.5 mA	44.5 mA	101.2Ω	101.2Ω			
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12V DC			20.8mA	20.8 mA	576Ω	576Ω	250mW	250mW	$120 \% \mathrm{~V}$ of nominal voltage
24V DC			16.7 mA	16.7 mA	1,440 ${ }^{\text {a }}$	1,440	400 mW	400 mW	$110 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		2 A 30 V DC (resistive load)
	Max. switching power		60 W (DC) (resistive load)
	Max. switching voltage		220 V DC
	Max. switching current		2 A
	Min. switching capacity (Reference value)*		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 270 mW (24 V DC)
		1 coil latching	100 mW (1.5 to 12 V DC), 150 mW (24 V DC)
		2 coil latching	200 mW (1.5 to 9 V DC), 250 mW (12 V DC), 400 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 2 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (Single side stable), Min. 5×10^{7} (1 or 2 coil latching) (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}^{\star 3}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g .035 oz .

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (TX/TX-S/TX-D relay AgPd contact type are available for low level load switching [10V DC, 10 mA max. level])
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT .
*3 The maximum ambient temperature allows for coil temperature rise at maximum allowable coil voltage. As for the applicable range of continuous carrying current against temperature, please refer to "Maximum value of continuous carrying current" chart.

REFERENCE DATA

1. Maximum value of continuous carrying current

Test conditions:
Coil applied voltage: 110\% of rated voltage
Continuous carrying current: 1,000 hours

4. Mechanical life

Tested sample:TK1-12V, 8 pcs.
Switching frequency: 30 Hz

6.-(1) Coil temperature rise Tested sample:TK1-12V, 6 pcs. Measured portion: Inside the coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7.-(1) Operate/release time characteristics Tested sample:TK1-5 V, 50 pcs.
<Without diode>

2. Maximum switching capacity

5. Electrical life (DC load)

Tested sample:TK1-12V, 10 pcs.
Condition: 2 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

6.-(2) Coil temperature rise

Tested sample:TK1-12V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7.-(2) Operate/release time characteristics Tested sample: TK1-5 V, 50 pcs.
<With diode>

3. Life curve

Change of contact resistance

8. Ambient temperature characteristics Tested sample:TK1-12V, 5 pcs.

9.-(1) High-frequency characteristics
(Isolation)

9.-(2) High-frequency characteristics (Insertion loss)

10. Malfunctional shock

Tested sample:TK1-12V, 6 pcs. (single side stable); TK1-L2-12V, 6 pcs. (latching)

11.-(1) Influence of adjacent mounting

11.-(2) Influence of adjacent mounting

12. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e

CAD Data

External dimensions

 Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

 1-coil latching
(Reset condition)

2-coil latching

(Reset condition)

NOTES

1. Packing style

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B:
$29.4 \mathrm{~N}\{3 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

[^0]: Note: In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.

